-
高校人工智能本科专业需要怎样的课程体系(三)
四、结语 参考文献: s4930/201903/t20190329_376012.html. [3] 武建鑫.重塑自身以塑造未来:人工智能时代的“MIT方案”[J].比较教育研究, [4] 张炜,王良,钱鹤伊.智能化社会工程科技人才核心素养:要素识别与培养策略[J].高等工程教育研究,2020(04):94-98+106. [6] 卡耐基梅隆大学计算机科学学院.Introductionof Bachelor of Science in Artificial Intelligence[EB/OL].[2019-10-16].https://www.cs.cmu.edu/bs-in-artificial-intelligence. [8] 新加坡信息通信媒体发展管理局. 新加坡技术转型路线图报告[EB/OL].[2019-10-26].https://www2.imda.gov.sg/programme-listing/technology-roadmap. [10] 卡耐基梅隆大学计算机科学学院. Curriculum[EB/OL].[2019-10-16].https://www.cs.cmu.edu/bs-in-artificial-intelligence/curriculum. [12] 吴婧姗,王雨洁,朱凌.学科交叉:未来工程师培养的必由之路——以机器人工程专业为例[J].高等工程教育研究,2020(02):68-75+98. [14] 清华大学交叉信息研究院.智班概况[EB/OL].[2019-10-18].http://iiis.tsinghua. [15] 刘进,吕文晶.人工智能创新与中国高等教育应对(下)[J].高等工程教育研究, [16] 王雪,何海燕,栗苹,张磊.人工智能人才培养研究:回顾、比较与展望[J].高等工程教育研究,2020(01):42-51. [18] 顾佩华.新工科与新范式:实践探索和思考[J].高等工程教育研究,2020(04):1-19. [20] 张雨萌,人工智能头条.人工智能必备的数学基础有哪些[EB/OL].[2019-10-18]. [21] 林健,郑丽娜.美国人工智能专业发展分析及对新兴工科专业建设的启示[J].高等工程教育研究,2020(04):20-33. [23] 王治东.人工智能研究路径的四重哲学维度[J].南京社会科学,2019(9):39-47.
-
高校人工智能本科专业需要怎样的课程体系(二)
三、我国人工智能本科专业课程体系建设的思考 然而,在我国高校面向人工智能领域人才培养做出快速反应的同时,我国高等教育在人工智能人才培养方面仍存在一些需要长期实践改革的问题。其一,针对本科层次,人工智能专业人才培养目标过于粗糙单一,需要有针对性地加以细化,包括与其他专业相区分、不同层次类型高校相区分、与高中和研究生阶段相衔接等,并亟待形成面向信息能力、创造能力、社交能力、人文情怀、国际化能力、问题解决能力等的人工智能人才培养能力体系[15]。其二,就人才培养模式而言,我国高等教育中的学科壁垒、学院划分、教职人员流动限制和跨学科教育实践的落后性都在很大程度上阻碍了人工智能专业相关平台和模块化课程的有效实施,如何使新人才培养模式落地成为重要的前提性问题。其三,在人才培养内容方面,课程内容繁杂、与科研实践关系不紧密等问题同样可能出现在人工智能专业培养过程中,导致学生在基础研究和面向应用方面都 “力不从心”,同时除通识教育课程选课范围外,缺乏对人工智能与人文、伦理、艺术等领域进行融合的中国化探索与尝试[16]。 (一)新人才:回应国家需求,增强专业特色 首先,在回应国家需求方面,我国人工智能本科专业在课程体系建设中首先要回应国家如下要求:“瞄准世界科技前沿,强化基础研究,实现前瞻性基础研究和引领性原创成果的重大突破,进一步提升高校人工智能领域科技创新、人才培养和服务国家需求,推动人工智能与实体经济深度融合、与人民需求深度融合、与教育深度融合”[17],对学生的人工智能基础知识与研究能力、技术设计与应用能力、跨学科(多学科)知识与能力、工程伦理、家国情怀、创新创业能力和终身学习能力等在培养目标上进行顶层设计,培养服务人民、服务国家的人才。 通过对两所案例学校的比较分析,本文提出两种不同的课程建设模式:一是以卡耐基梅隆大学为代表的专一且深入的人工智能专业课程模式,二是以南洋理工大学为代表的“人工智能+X”的跨学科课程模式。与卡耐基梅隆大学相似的在人工智能领域有深厚积淀的、处于领先地位的高校或在人工智能领域研究覆盖面广、有一定实力的高校可以开设专一且深入的人工智能课程体系,以培养有大量知识能力储备的人工智能专攻型、研究型人才,人工智能的发展也离不开领域内基础研究的支持。而一些在人工智能某一方面有所专长且在其他相关学科也有所特色的大学可以开设“人工智能+X”的跨学科课程体系,培养能够在相关领域开展研究并将人工智能应用到实际问题中的人工智能复合型人才(如人工智能+医疗、人工智能+地球科学、人工智能+金融),或是注重应用的人工智能某一领域的技能型人才(如机器学习、人机交互、自然语言处理等)。各大学分别培养不同类型人工智能人才,各专业各具特色,有利于形成多元化人才培养结构,丰富人工智能领域市场的人才供给。在此基础上,各大学依据培养目标的具体特征,明晰其应具有的知识和能力,进一步规定专业课程体系。 根据新人才培养目标的要求,突破单一学科思维和院系设置物理壁垒的跨学科平台建设以及课程体系重构成为许多专业改革的方向,例如天津大学建构的面向未来科技和产业发展的多学院和多学科合作跨学科人才培养平台(未来智能机器和系统培养平台、未来智能医疗与健康教育平台等)[18]。本文受两所案例大学,特别是卡耐基梅隆大学的启发,提出在重视人工智能专业课程的基础上,依托跨学科平台提供不同领域教学人员和项目资源,构建人工智能模块化课程的设想,明确学生应获得的知识能力模块,分清不同模块衔接关系。 人工智能本科专业进行课程设计时,应将总体课程结构和每一门课程进行模块化设计,尽可能地丰富课程模块,宏观上建立“基础知识模块+人工智能专业模块+跨学科特色模块+综合素质选修模块”等课程模块(见图2),微观上合理安排、明确设置一门专业课程的能力模块,依此有针对性地授课,突出课程特色,避免课程冗余。同时,结合基础核心课程、专业核心课程以及专业选修课程和通识选修课程等课程类型规定,明确专业核心和特色,并在不同学科交叉中分清不同类型课程的作用、地位和主次关系,避免课程数量过多、知识重复率高、难以有效融合、学生忽视专业知识等问题。在之后的专业课程设计中,也要将教材模块化、课程内容模块化等细节落到实处。 (三)新知识:优化课程内容,聚焦人工智能 首先,在“厚基础”方面,借鉴南洋理工大学和卡耐基梅隆大学的课程构成,需在数学和计算机两个核心课程模块开设更系统更全面的基础课程。首先,从学生基础和认知发展情况出发,本科阶段教师应充分了解高中学生对于人工智能这一“高深”领域的知识准备水平和认知水平,更好地与高中阶段课程衔接,在低年级阶段开展螺旋式上升的数学和计算机知识学习,做好课程内容铺垫,使学生更顺利地进入专业学习。另一方面,从学科知识发展角度来看,因人工智能专业的发展立足于数学和计算机科学的基础之上,教师要巧妙筛选与人工智能相关的数学和计算机知识,避免“大水漫灌”和“学用不衔接”的问题,并在课程中点明这些基础知识的人工智能应用范围,例如,概率论中的贝叶斯思维可以应用到利用人工智能过滤垃圾邮件的问题中、随机过程中的隐马尔科夫模型可以支持语音识别等[20]。总之,人工智能本科专业要重视并开足支持学生在人工智能领域深入学习、研究的基础课程,保证课程质量,使学生积累深厚的知识基础,打牢学生学习的“地基”。 最后,课程内容具有知识性与价值性相统一的特点,人工智能专业要通过人文、社会、艺术和伦理等方面的通识教育课程对学生进行人文关照,提升学生的生态意识、法律意识、审美能力和伦理道德水平,特别是引发学生对人工智能伦理和社会价值的思考。人工智能在无生命的机器上对人类智能的模拟必然会产生伦理问题,包括表层的隐私泄露、工人失业风险增加、教育领域应用的两面性、军事领域应用带来的安全性问题等,更隐藏着“机器是否会统治人、奴役人”以及人与人工智能的关系等哲学问题[23]。虽然人工智能从数据智能到类脑(生物)智能还有很长的路要走,但在实现这些技术之前,这些伦理道德问题都是人类需要思考的。学校教育要肩负起对学生社会责任感和伦理道德的涵养,德育、智育和美育课程三育并举,专业课程和通识课程相辅相成,结合工程实例和文艺创作,引发学生对伦理问题的注意和思考,引导学生正确平衡工具理性和价值理性,培育正确社会价值观和对全人类的关怀之心。
-
高校人工智能本科专业需要怎样的课程体系(一)
高校人工智能本科专业需要怎样的课程体系 ——基于卡耐基梅隆大学和南洋理工大学的比较分析 关键词:人工智能;本科专业;课程体系;人才培养 作者简介:陶泓杉,女,天津人,天津大学教育学院硕士研究生,主要从事高等教育研究;郄海霞,女,河北人,天津大学教育学院教授,博士生导师,教育学博士,主要从事比较高等教育,高等工程教育研究。 世界范围内新一轮科技革命和产业变革席卷而来、蓬勃发展。人工智能正是引发产业快速变革的新一代信息技术革命的重要领域之一,因其在科技发展过程中的重要作用以及为产业创新发展带来的巨大机遇,世界各国纷纷将人工智能上升至国家战略高度,以此抢抓人工智能发展的重大战略机遇,保持本国研发前沿性和独创性,培养国家急需的高端科技创新人才,加快创新型国家和世界科技强国建设。 然而,各国脱胎于计算机专业的人工智能专业均刚刚建立,各高校对于这一新兴专业的人才培养目标、培养方式、课程体系建设等具体细节的思考尚不完善,仍面临一些问题和挑战。首先,确定什么样的人工智能本科专业人才培养目标?一方面人工智能领域涉及范围广,与其他领域交叉应用后又产生更多的人工智能应用学科,人工智能本科专业如何厘清自身内涵,强化专业特性,做到“至小有内”[2]并兼顾专业内多元化人才培养是影响专业长期发展的关键前提;另一方面,智能时代、知识经济时代到来,低端劳动力极大可能被机器替代,新时代人才需要具备更多人类所特有的、适应时代要求的素养,包括技术素养、数据素养、人文素养[3],以及批判性思维、决策能力、问题解决等高阶认知能力、沟通与协作等社会技能和伦理素养[4],人工智能本科专业如何明晰与专业相适应的人才素养目标对课程体系建设具有指导意义。其次,采取什么样的形式培养人工智能本科专业人才?人工智能学科天然具有与其他学科研究进行交叉的秉性[2],厘清相关学科在人工智能专业课程中的地位、所占比例以及协调各相关学科领域的主次关系影响着课程开展的有效性。同时,人工智能专业如何在课程组织形式上打破传统课程的学科壁垒,回归学生中心,融合案例教学、项目式教学等教学方法在微观上决定了学生如何形成并运用他们的知识体系。最后,培养人工智能本科专业人才需要什么样的课程内容?课程内容传递的知识是学生建构自身知识体系的直接材料,如何贴近学生实际、社会经验和学科发展规律,如何做到人工智能专业课程体系应有的“专(专业)、通(通识)、交(交叉)”[2],使学生具有全面扎实、易应用且适应将来工作环境的知识体系都应体现在课程内容的选择中。 二、卡耐基梅隆大学和南洋理工大学人工智能本科专业课程体系比较分析 (一)课程(专业)目标比较 卡耐基梅隆大学于2018年秋季设立“人工智能科学(science in artificial intelligence)”专业,授予学士学位,旨在培养能够建设未来人工智能的人才,通过课程学习引导学生建构将大量数据转换为可执行决策所需的知识体系,使学生获得基础的计算机科学知识和技能以及在机器学习和自动化推理方面的额外专业知识[6],其课程重点在于教会学生利用复杂的输入(如视觉、语言和庞大的数据库)来做出决策或增强人类能力。沿袭卡耐基梅隆大学致力于人工智能服务于社会公益的传统,学生还会学习到伦理和社会责任方面的课程,并可以选择参加一些使世界变得更加美好的独立研究项目,覆盖医疗、交通和教育等领域,培养拥有职业伦理道德和社会责任感的人工智能人才。同时,为回应历届美国政府维护其在人工智能领域全球领导地位的战略要求,使人工智能成为金融、医疗、教育、工业甚至军事领域的重要技术支撑,卡内基梅隆大学将其自20世纪50年代人工智能发端以来,继承创新的各领域人工智能知识与技术划分为多个专业领域,通过必修模块或选修课等形式,供学生个性化学习并可以持续深入研究,以培养专深的人工智能人才。 就培养“新人才”的要求而言,可以发现两校的一些相似之处:其一,专业的建立源于对国家发展和科学进步的回应,以培养具有深厚知识基础,能够为人工智能学科、社会、国家和世界科技发展做出贡献的高技能人才;其二,专业课程仍要建立在数学和计算机知识和技能的培养之上,进一步与人工智能知识融合,明确“人工智能”特征;其三,注重实践、面向应用,通过研究项目、实习实践将知识整合应用于不同行业领域,培养学生解决问题能力、伦理道德和其他核心素养,促进学生全面发展。同时,在专业要求的知识和能力方面,两校也存在差异:卡耐基梅隆大学更偏重人工智能领域知识的系统构建和深入学习,南洋理工大学则更注重大数据统计、处理和分析领域的知识学习,在之后的课程内容分析中将进一步详细阐述。 课程设置离不开合理的课程结构和课程内容。课程结构是把学生的在校学习时间分成各部分,在不同的学习时间安排不同的课程类型,以此形成一个课程的组织体系,主要规定了组成课程体系的学科门类以及各学科内容的比例关系等,主要的分类有学科课程与综合实践课程、必修课与选修课等。 (三)课程内容比较 而卡耐基梅隆大学更注重“人工智能”的专业特征,从表2展示的专业基础课程中就可以看出,数学和计算机基础课程较之南洋理工大学更为高阶且与专业更加贴合(如计算机科学的数学基础)。同时,依托其在人工智能领域的深厚积淀,设置了决策与机器人集群、机器学习集群、感知与语言集群和人机交互集群四个集群的选修课程,更能使学生从基础概念和理论出发,全面了解人工智能领域的各方面知识,以便自主选择自己感兴趣的领域持续深入学习和钻研。课程内容的差异由两所大学的人工智能人才培养目标的差异决定,南洋理工大学倾向于培养“人工智能+大数据统计与分析”方面的人才,而卡耐基梅隆大学更专注于在“人工智能”领域内培养人才。 最后,在注重知识学习和应用的同时,南洋理工大学和卡耐基梅隆大学同样关注到了人工智能伦理问题,探索性地开设人工智能与人文、计算机领域的伦理和政策问题以及人工智能、社会与人类等课程,邀请不同学科学者就人工智能与人文历史、与社会、与环境等相关问题进行跨学科对话和讨论,学生可以由此关注人工智能领域人-机、机-机以及人-机共融所形成的社会形态及需要遵守的道德准则,同时课程以研讨的形式进行,给予学生充分地思考、讨论和验证的空间,有利于对伦理道德问题的学习。 综合以上分析,卡耐基梅隆大学和南洋理工大学的人工智能专业课程体系呈现出三方面共同优势。在课程目标方面,回应国家需求、明确而有一定特色。在课程结构方面,将人工智能核心课程设置为数学、计算机基础模块和人工智能相关专业核心模块,并辅以人文与艺术、科学与工程和商业与管理等通识选修课程,通过模块化课程避免割裂学科之间的逻辑联系,同时个性化培养学生综合素质。在课程内容方面,注重扎实的数理和计算机基础;通过设置跨学科课程和配备不同学科教学人员、使用项目式教学方法、融合科研实习项目等促进课程学科交叉、面向应用;突出人工智能伦理思考,为支持人工智能与工业、人类生活深度融合提供伦理观。